Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia.

نویسندگان

  • Jeroen H F de Baaij
  • Eiske M Dorresteijn
  • Eric A M Hennekam
  • Erik-Jan Kamsteeg
  • Rowdy Meijer
  • Karin Dahan
  • Michelle Muller
  • Marinus A van den Dorpel
  • René J M Bindels
  • Joost G J Hoenderop
  • Olivier Devuyst
  • Nine V A M Knoers
چکیده

BACKGROUND Magnesium (Mg(2+)) is an essential ion for cell growth, neuroplasticity and muscle contraction. Blood Mg(2+) levels <0.7 mmol/L may cause a heterogeneous clinical phenotype, including muscle cramps and epilepsy and disturbances in K(+) and Ca(2+) homeostasis. Over the last decade, the genetic origin of several familial forms of hypomagnesaemia has been found. In 2000, mutations in FXYD2, encoding the γ-subunit of the Na(+)-K(+)-ATPase, were identified to cause isolated dominant hypomagnesaemia (IDH) in a large Dutch family suffering from hypomagnesaemia, hypocalciuria and chondrocalcinosis. However, no additional patients have been identified since then. METHODS Here, two families with hypomagnesaemia and hypocalciuria were screened for mutations in the FXYD2 gene. Moreover, the patients were clinically and genetically characterized. RESULTS We report a p.Gly41Arg FXYD2 mutation in two families with hypomagnesaemia and hypocalciuria. Interestingly, this is the same mutation as was described in the original study. As in the initial family, several patients suffered from muscle cramps, chondrocalcinosis and epilepsy. Haplotype analysis revealed an overlapping haplotype in all families, suggesting a founder effect. CONCLUSIONS The recurrent p.Gly41Arg FXYD2 mutation in two new families with IDH confirms that FXYD2 mutation causes hypomagnesaemia. Until now, no other FXYD2 mutations have been reported which could indicate that other FXYD2 mutations will not cause hypomagnesaemia or are embryonically lethal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired routing of wild type FXYD2 after oligomerisation with FXYD2-G41R might explain the dominant nature of renal hypomagnesemia.

Autosomal dominant renal hypomagnesemia, associated with hypocalciurea, has been linked to a G to A mutation at nucleotide position 121 in the FXYD2 gene, resulting in the substitution of Gly with Arg at residue 41 of the protein. FXYD2, also called the Na,K-ATPase gamma-subunit, binds to Na,K-ATPase and influences its cation affinities. In this paper, we provide evidence for the molecular mech...

متن کامل

Human FXYD2 G41R mutation responsible for renal hypomagnesemia behaves as an inward-rectifying cation channel.

A mutation in the human FXYD2 polypeptide (Na-K-ATPase gamma subunit) that changes a conserved transmembrane glycine to arginine is linked to dominant renal hypomagnesemia. Xenopus laevis oocytes injected with wild-type FXYD2 or the mutant G41R cRNAs expressed large nonselective ion currents. However, in contrast to the wild-type FXYD2 currents, inward rectifying cation currents were induced by...

متن کامل

HNF1B mutations associate with hypomagnesemia and renal magnesium wasting.

Mutations in hepatocyte nuclear factor 1B (HNF1B), which is a transcription factor expressed in tissues including renal epithelia, associate with abnormal renal development. While studying renal phenotypes of children with HNF1B mutations, we identified a teenager who presented with tetany and hypomagnesemia. We retrospectively reviewed radiographic and laboratory data for all patients from a s...

متن کامل

Founder Effect of KHDC3L, p.M1V Mutation, on Iranian Patients with Recurrent Hydatidiform Moles

Background: Recurrent hydatidiform moles (RHMs) are an unusual pregnancy with at least two molar gestations that are associated with abnormal proliferation of trophoblastic tissue and a failure in the embryonic tissues development. Three maternal-effect genes, including NLRP7, KHDC3L, and PADI6 have been identified as the cause of RHMs. The present study aimed to understand the association of a...

متن کامل

De novo HNF1 homeobox B mutation as a cause for chronic, treatment-resistant hypomagnesaemia

29-year-old female presenting with an 8-year history of unexplained hypomagnesaemia, which was severe enough to warrant intermittent inpatient admission for intravenous magnesium. Urinary magnesium was inappropriately normal in the context of hypomagnesaemia indicating magnesium wasting. Ultrasound imaging demonstrated unilateral renal cysts and computed tomography of kidneys, ureters and bladd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association

دوره 30 6  شماره 

صفحات  -

تاریخ انتشار 2015